Nuprl Lemma : scheme-and-rule 11,40

S1S2:RealizerScheme{i:l}(), P1P2:(ES).
S1 |-es.P1(es)
 S2 |-es.P2(es)
 scheme-compatible(S1;S2)
 scheme-plus(S1;S2) |-es.P1(es) & P2(es
latex


Definitionsf(a), P  Q, x:AB(x), {x:AB(x)} , , type List, x:AB(x), b, x(s), R-Feasible(R), R ||- es.P(es), A || B, scheme-compatible(A;B), namer-disjoint(n1;n2;nmr1;nmr2), False, A, A  B, , namer-shift(n;namer), s = t, x:A  B(x), ES, Consistent(R;es), P & Q, Type, , x.A(x), EqDecider(T), Unit, left + right, IdLnk, Id, EOrderAxioms(Epred?info), EState(T), Knd, kindcase(ka.f(a); l,t.g(l;t) ), Msg(M), , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), e < e', r  s, , constant_function(f;A;B), Top, S  T, xt(x), A  B, as @ bs, <ab>, True, T, a < b, Void, #$n, left  right, let x,y,z = a in t(x;y;z), RealizerScheme{i:l}(), S |-es.P(es), scheme-plus(A;B), n+m, Namer(n;Id_list), t  T, [], {i..j}, i  j < k, Inj(A;B;f), Atom$n, (x  l), ||as||, A c B, P  Q, P  Q
Lemmasnamer-disjoint-shift, not functionality wrt iff, nil member, l member wf, l contains nil, le wf, append wf, squash wf, true wf, Id wf, nat wf, l contains append, Namer wf, Namer-subtype, l contains append2, R-and-rule, event system wf, namer-shift wf, R-compat-disjoint, R-compat-symmetry

origin